819 lines
28 KiB
C
819 lines
28 KiB
C
/*
|
|
xxHash - Extremely Fast Hash algorithm
|
|
Development source file for `xxh3`
|
|
Copyright (C) 2019-present, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- xxHash source repository : https://github.com/Cyan4973/xxHash
|
|
*/
|
|
|
|
/* Note :
|
|
This file is separated for development purposes.
|
|
It will be integrated into `xxhash.c` when development phase is complete.
|
|
*/
|
|
|
|
#ifndef XXH3_H
|
|
#define XXH3_H
|
|
|
|
|
|
/* === Dependencies === */
|
|
|
|
#undef XXH_INLINE_ALL /* in case it's already defined */
|
|
#define XXH_INLINE_ALL
|
|
#include "xxhash.h"
|
|
|
|
#undef NDEBUG /* avoid redefinition */
|
|
#define NDEBUG
|
|
#include <assert.h>
|
|
|
|
|
|
/* === Compiler versions === */
|
|
|
|
#if !(defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) /* C99+ */
|
|
# define restrict /* disable */
|
|
#endif
|
|
|
|
#if defined(__GNUC__)
|
|
# if defined(__SSE2__)
|
|
# include <x86intrin.h>
|
|
# elif defined(__ARM_NEON__) || defined(__ARM_NEON)
|
|
# define inline __inline__ /* clang bug */
|
|
# include <arm_neon.h>
|
|
# undef inline
|
|
# endif
|
|
# define ALIGN(n) __attribute__ ((aligned(n)))
|
|
#elif defined(_MSC_VER)
|
|
# include <intrin.h>
|
|
# define ALIGN(n) __declspec(align(n))
|
|
#else
|
|
# define ALIGN(n) /* disabled */
|
|
#endif
|
|
|
|
|
|
|
|
/* ==========================================
|
|
* Vectorization detection
|
|
* ========================================== */
|
|
#define XXH_SCALAR 0
|
|
#define XXH_SSE2 1
|
|
#define XXH_AVX2 2
|
|
#define XXH_NEON 3
|
|
|
|
#ifndef XXH_VECTOR /* can be defined on command line */
|
|
# if defined(__AVX2__)
|
|
# define XXH_VECTOR XXH_AVX2
|
|
# elif defined(__SSE2__)
|
|
# define XXH_VECTOR XXH_SSE2
|
|
/* msvc support maybe later */
|
|
# elif defined(__GNUC__) && (defined(__ARM_NEON__) || defined(__ARM_NEON))
|
|
# define XXH_VECTOR XXH_NEON
|
|
# else
|
|
# define XXH_VECTOR XXH_SCALAR
|
|
# endif
|
|
#endif
|
|
|
|
/* U64 XXH_mult32to64(U32 a, U64 b) { return (U64)a * (U64)b; } */
|
|
#if defined(_MSC_VER) && !defined(_M_ARM64) && !defined(_M_ARM)
|
|
# include <intrin.h>
|
|
/* MSVC doesn't do a good job with the mull detection. */
|
|
# define XXH_mult32to64 __emulu
|
|
#else
|
|
# define XXH_mult32to64(x, y) ((U64)((x) & 0xFFFFFFFF) * (U64)((y) & 0xFFFFFFFF))
|
|
#endif
|
|
|
|
|
|
/* ==========================================
|
|
* XXH3 default settings
|
|
* ========================================== */
|
|
|
|
#define KEYSET_DEFAULT_SIZE 48 /* minimum 32 */
|
|
|
|
|
|
ALIGN(64) static const U32 kKey[KEYSET_DEFAULT_SIZE] = {
|
|
0xb8fe6c39,0x23a44bbe,0x7c01812c,0xf721ad1c,
|
|
0xded46de9,0x839097db,0x7240a4a4,0xb7b3671f,
|
|
0xcb79e64e,0xccc0e578,0x825ad07d,0xccff7221,
|
|
0xb8084674,0xf743248e,0xe03590e6,0x813a264c,
|
|
0x3c2852bb,0x91c300cb,0x88d0658b,0x1b532ea3,
|
|
0x71644897,0xa20df94e,0x3819ef46,0xa9deacd8,
|
|
0xa8fa763f,0xe39c343f,0xf9dcbbc7,0xc70b4f1d,
|
|
0x8a51e04b,0xcdb45931,0xc89f7ec9,0xd9787364,
|
|
|
|
0xeac5ac83,0x34d3ebc3,0xc581a0ff,0xfa1363eb,
|
|
0x170ddd51,0xb7f0da49,0xd3165526,0x29d4689e,
|
|
0x2b16be58,0x7d47a1fc,0x8ff8b8d1,0x7ad031ce,
|
|
0x45cb3a8f,0x95160428,0xafd7fbca,0xbb4b407e,
|
|
};
|
|
|
|
|
|
#if defined(__GNUC__) && defined(__i386__)
|
|
/* GCC is stupid and tries to vectorize this.
|
|
* This tells GCC that it is wrong. */
|
|
__attribute__((__target__("no-sse")))
|
|
#endif
|
|
static U64
|
|
XXH3_mul128(U64 ll1, U64 ll2)
|
|
{
|
|
#if defined(__SIZEOF_INT128__) || (defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
|
|
|
|
__uint128_t lll = (__uint128_t)ll1 * ll2;
|
|
return (U64)lll + (U64)(lll >> 64);
|
|
|
|
#elif defined(_M_X64) || defined(_M_IA64)
|
|
|
|
#ifndef _MSC_VER
|
|
# pragma intrinsic(_umul128)
|
|
#endif
|
|
U64 llhigh;
|
|
U64 const lllow = _umul128(ll1, ll2, &llhigh);
|
|
return lllow + llhigh;
|
|
|
|
#elif defined(__aarch64__) && defined(__GNUC__)
|
|
|
|
U64 llow;
|
|
U64 llhigh;
|
|
__asm__("umulh %0, %1, %2" : "=r" (llhigh) : "r" (ll1), "r" (ll2));
|
|
__asm__("madd %0, %1, %2, %3" : "=r" (llow) : "r" (ll1), "r" (ll2), "r" (llhigh));
|
|
return lllow;
|
|
|
|
/* Do it out manually on 32-bit.
|
|
* This is a modified, unrolled, widened, and optimized version of the
|
|
* mulqdu routine from Hacker's Delight.
|
|
*
|
|
* https://www.hackersdelight.org/hdcodetxt/mulqdu.c.txt
|
|
*
|
|
* This was modified to use U32->U64 multiplication instead
|
|
* of U16->U32, to add the high and low values in the end,
|
|
* be endian-independent, and I added a partial assembly
|
|
* implementation for ARM. */
|
|
|
|
/* An easy 128-bit folding multiply on ARMv6T2 and ARMv7-A/R can be done with
|
|
* the mighty umaal (Unsigned Multiply Accumulate Accumulate Long) which takes 4 cycles
|
|
* or less, doing a long multiply and adding two 32-bit integers:
|
|
*
|
|
* void umaal(U32 *RdLo, U32 *RdHi, U32 Rn, U32 Rm)
|
|
* {
|
|
* U64 prodAcc = (U64)Rn * (U64)Rm;
|
|
* prodAcc += *RdLo;
|
|
* prodAcc += *RdHi;
|
|
* *RdLo = prodAcc & 0xFFFFFFFF;
|
|
* *RdHi = prodAcc >> 32;
|
|
* }
|
|
*
|
|
* This is compared to umlal which adds to a single 64-bit integer:
|
|
*
|
|
* void umlal(U32 *RdLo, U32 *RdHi, U32 Rn, U32 Rm)
|
|
* {
|
|
* U64 prodAcc = (U64)Rn * (U64)Rm;
|
|
* prodAcc += (*RdLo | ((U64)*RdHi << 32);
|
|
* *RdLo = prodAcc & 0xFFFFFFFF;
|
|
* *RdHi = prodAcc >> 32;
|
|
* }
|
|
*
|
|
* Getting the compiler to emit them is like pulling teeth, and checking
|
|
* for it is annoying because ARMv7-M lacks this instruction. However, it
|
|
* is worth it, because this is an otherwise expensive operation. */
|
|
|
|
/* GCC-compatible, ARMv6t2 or ARMv7+, non-M variant, and 32-bit */
|
|
#elif defined(__GNUC__) /* GCC-compatible */ \
|
|
&& defined(__ARM_ARCH) && !defined(__aarch64__) && !defined(__arm64__) /* 32-bit ARM */\
|
|
&& !defined(__ARM_ARCH_7M__) /* <- Not ARMv7-M vv*/ \
|
|
&& !(defined(__TARGET_ARCH_ARM) && __TARGET_ARCH_ARM == 0 && __TARGET_ARCH_THUMB == 4) \
|
|
&& (defined(__ARM_ARCH_6T2__) || __ARM_ARCH > 6) /* ARMv6T2 or later */
|
|
|
|
U32 w[4] = { 0 };
|
|
U32 u[2] = { (U32)(ll1 >> 32), (U32)ll1 };
|
|
U32 v[2] = { (U32)(ll2 >> 32), (U32)ll2 };
|
|
U32 k;
|
|
|
|
/* U64 t = (U64)u[1] * (U64)v[1];
|
|
* w[3] = t & 0xFFFFFFFF;
|
|
* k = t >> 32; */
|
|
__asm__("umull %0, %1, %2, %3"
|
|
: "=r" (w[3]), "=r" (k)
|
|
: "r" (u[1]), "r" (v[1]));
|
|
|
|
/* t = (U64)u[0] * (U64)v[1] + w[2] + k;
|
|
* w[2] = t & 0xFFFFFFFF;
|
|
* k = t >> 32; */
|
|
__asm__("umaal %0, %1, %2, %3"
|
|
: "+r" (w[2]), "+r" (k)
|
|
: "r" (u[0]), "r" (v[1]));
|
|
w[1] = k;
|
|
k = 0;
|
|
|
|
/* t = (U64)u[1] * (U64)v[0] + w[2] + k;
|
|
* w[2] = t & 0xFFFFFFFF;
|
|
* k = t >> 32; */
|
|
__asm__("umaal %0, %1, %2, %3"
|
|
: "+r" (w[2]), "+r" (k)
|
|
: "r" (u[1]), "r" (v[0]));
|
|
|
|
/* t = (U64)u[0] * (U64)v[0] + w[1] + k;
|
|
* w[1] = t & 0xFFFFFFFF;
|
|
* k = t >> 32; */
|
|
__asm__("umaal %0, %1, %2, %3"
|
|
: "+r" (w[1]), "+r" (k)
|
|
: "r" (u[0]), "r" (v[0]));
|
|
w[0] = k;
|
|
|
|
return (w[1] | ((U64)w[0] << 32)) + (w[3] | ((U64)w[2] << 32));
|
|
|
|
#else /* Portable scalar version */
|
|
|
|
/* emulate 64x64->128b multiplication, using four 32x32->64 */
|
|
U32 const h1 = (U32)(ll1 >> 32);
|
|
U32 const h2 = (U32)(ll2 >> 32);
|
|
U32 const l1 = (U32)ll1;
|
|
U32 const l2 = (U32)ll2;
|
|
|
|
U64 const llh = XXH_mult32to64(h1, h2);
|
|
U64 const llm1 = XXH_mult32to64(l1, h2);
|
|
U64 const llm2 = XXH_mult32to64(h1, l2);
|
|
U64 const lll = XXH_mult32to64(l1, l2);
|
|
|
|
U64 const t = lll + (llm1 << 32);
|
|
U64 const carry1 = t < lll;
|
|
|
|
U64 const lllow = t + (llm2 << 32);
|
|
U64 const carry2 = lllow < t;
|
|
U64 const llhigh = llh + (llm1 >> 32) + (llm2 >> 32) + carry1 + carry2;
|
|
|
|
return llhigh + lllow;
|
|
|
|
#endif
|
|
}
|
|
|
|
|
|
static XXH64_hash_t XXH3_avalanche(U64 h64)
|
|
{
|
|
h64 ^= h64 >> 29;
|
|
h64 *= PRIME64_3;
|
|
h64 ^= h64 >> 32;
|
|
return h64;
|
|
}
|
|
|
|
|
|
/* ==========================================
|
|
* Short keys
|
|
* ========================================== */
|
|
|
|
XXH_FORCE_INLINE XXH64_hash_t
|
|
XXH3_len_1to3_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(len > 0 && len <= 3);
|
|
assert(keyPtr != NULL);
|
|
{ const U32* const key32 = (const U32*) keyPtr;
|
|
BYTE const c1 = ((const BYTE*)data)[0];
|
|
BYTE const c2 = ((const BYTE*)data)[len >> 1];
|
|
BYTE const c3 = ((const BYTE*)data)[len - 1];
|
|
U32 const l1 = (U32)(c1) + ((U32)(c2) << 8);
|
|
U32 const l2 = (U32)(len) + ((U32)(c3) << 2);
|
|
U64 const ll11 = XXH_mult32to64((l1 + seed + key32[0]), (l2 + key32[1]));
|
|
return XXH3_avalanche(ll11);
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE XXH64_hash_t
|
|
XXH3_len_4to8_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(len >= 4 && len <= 8);
|
|
{ const U32* const key32 = (const U32*) keyPtr;
|
|
U64 acc = PRIME64_1 * (len + seed);
|
|
U32 const l1 = XXH_readLE32(data) + key32[0];
|
|
U32 const l2 = XXH_readLE32((const BYTE*)data + len - 4) + key32[1];
|
|
acc += XXH_mult32to64(l1, l2);
|
|
return XXH3_avalanche(acc);
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE U64
|
|
XXH3_readKey64(const void* ptr)
|
|
{
|
|
assert(((size_t)ptr & 7) == 0); /* aligned on 8-bytes boundaries */
|
|
if (XXH_CPU_LITTLE_ENDIAN) {
|
|
return *(const U64*)ptr;
|
|
} else {
|
|
const U32* const ptr32 = (const U32*)ptr;
|
|
return (U64)ptr32[0] + (((U64)ptr32[1]) << 32);
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE XXH64_hash_t
|
|
XXH3_len_9to16_64b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(key != NULL);
|
|
assert(len >= 9 && len <= 16);
|
|
{ const U64* const key64 = (const U64*) keyPtr;
|
|
U64 acc = PRIME64_1 * (len + seed);
|
|
U64 const ll1 = XXH_readLE64(data) + XXH3_readKey64(key64);
|
|
U64 const ll2 = XXH_readLE64((const BYTE*)data + len - 8) + XXH3_readKey64(key64+1);
|
|
acc += XXH3_mul128(ll1, ll2);
|
|
return XXH3_avalanche(acc);
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE XXH64_hash_t
|
|
XXH3_len_0to16_64b(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(len <= 16);
|
|
{ if (len > 8) return XXH3_len_9to16_64b(data, len, kKey, seed);
|
|
if (len >= 4) return XXH3_len_4to8_64b(data, len, kKey, seed);
|
|
if (len) return XXH3_len_1to3_64b(data, len, kKey, seed);
|
|
return seed;
|
|
}
|
|
}
|
|
|
|
|
|
/* === Long Keys === */
|
|
|
|
#define STRIPE_LEN 64
|
|
#define STRIPE_ELTS (STRIPE_LEN / sizeof(U32))
|
|
#define ACC_NB (STRIPE_LEN / sizeof(U64))
|
|
|
|
XXH_FORCE_INLINE void
|
|
XXH3_accumulate_512(void* acc, const void *restrict data, const void *restrict key)
|
|
{
|
|
#if (XXH_VECTOR == XXH_AVX2)
|
|
|
|
assert(((size_t)acc) & 31 == 0);
|
|
{ ALIGN(32) __m256i* const xacc = (__m256i *) acc;
|
|
const __m256i* const xdata = (const __m256i *) data;
|
|
const __m256i* const xkey = (const __m256i *) key;
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
|
|
__m256i const d = _mm256_loadu_si256 (xdata+i);
|
|
__m256i const k = _mm256_loadu_si256 (xkey+i);
|
|
__m256i const dk = _mm256_add_epi32 (d,k); /* uint32 dk[8] = {d0+k0, d1+k1, d2+k2, d3+k3, ...} */
|
|
__m256i const res = _mm256_mul_epu32 (dk, _mm256_shuffle_epi32 (dk, 0x31)); /* uint64 res[4] = {dk0*dk1, dk2*dk3, ...} */
|
|
__m256i const add = _mm256_add_epi64(d, xacc[i]);
|
|
xacc[i] = _mm256_add_epi64(res, add);
|
|
}
|
|
}
|
|
|
|
#elif (XXH_VECTOR == XXH_SSE2)
|
|
|
|
assert(((size_t)acc) & 15 == 0);
|
|
{ ALIGN(16) __m128i* const xacc = (__m128i *) acc;
|
|
const __m128i* const xdata = (const __m128i *) data;
|
|
const __m128i* const xkey = (const __m128i *) key;
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
|
|
__m128i const d = _mm_loadu_si128 (xdata+i);
|
|
__m128i const k = _mm_loadu_si128 (xkey+i);
|
|
__m128i const dk = _mm_add_epi32 (d,k); /* uint32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
|
|
__m128i const res = _mm_mul_epu32 (dk, _mm_shuffle_epi32 (dk, 0x31)); /* uint64 res[2] = {dk0*dk1,dk2*dk3} */
|
|
__m128i const add = _mm_add_epi64(d, xacc[i]);
|
|
xacc[i] = _mm_add_epi64(res, add);
|
|
}
|
|
}
|
|
|
|
#elif (XXH_VECTOR == XXH_NEON)
|
|
|
|
assert(((size_t)acc) & 15 == 0);
|
|
{ uint64x2_t* const xacc = (uint64x2_t *)acc;
|
|
const uint32_t* const xdata = (const uint32_t *)data;
|
|
const uint32_t* const xkey = (const uint32_t *)key;
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN / sizeof(uint64x2_t); i++) {
|
|
uint32x4_t const d = vld1q_u32(xdata+i*4); /* U32 d[4] = xdata[i]; */
|
|
uint32x4_t const k = vld1q_u32(xkey+i*4); /* U32 k[4] = xkey[i]; */
|
|
uint32x4_t dk = vaddq_u32(d, k); /* U32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
|
|
#if !defined(__aarch64__) && !defined(__arm64__) /* ARM32-specific hack */
|
|
/* vzip on ARMv7 Clang generates a lot of vmovs (technically vorrs) without this.
|
|
* vzip on 32-bit ARM NEON will overwrite the original register, and I think that Clang
|
|
* assumes I don't want to destroy it and tries to make a copy. This slows down the code
|
|
* a lot.
|
|
* aarch64 not only uses an entirely different syntax, but it requires three
|
|
* instructions...
|
|
* ext v1.16B, v0.16B, #8 // select high bits because aarch64 can't address them directly
|
|
* zip1 v3.2s, v0.2s, v1.2s // first zip
|
|
* zip2 v2.2s, v0.2s, v1.2s // second zip
|
|
* ...to do what ARM does in one:
|
|
* vzip.32 d0, d1 // Interleave high and low bits and overwrite. */
|
|
__asm__("vzip.32 %e0, %f0" : "+w" (dk)); /* dk = { dk0, dk2, dk1, dk3 }; */
|
|
xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u32(d)); /* xacc[i] += (U64x2)d; */
|
|
xacc[i] = vmlal_u32(xacc[i], vget_low_u32(dk), vget_high_u32(dk)); /* xacc[i] += { (U64)dk0*dk1, (U64)dk2*dk3 }; */
|
|
#else
|
|
/* On aarch64, vshrn/vmovn seems to be equivalent to, if not faster than, the vzip method. */
|
|
uint32x2_t dkL = vmovn_u64(vreinterpretq_u64_u32(dk)); /* U32 dkL[2] = dk & 0xFFFFFFFF; */
|
|
uint32x2_t dkH = vshrn_n_u64(vreinterpretq_u64_u32(dk), 32); /* U32 dkH[2] = dk >> 32; */
|
|
xacc[i] = vaddq_u64(xacc[i], vreinterpretq_u64_u32(d)); /* xacc[i] += (U64x2)d; */
|
|
xacc[i] = vmlal_u32(xacc[i], dkL, dkH); /* xacc[i] += (U64x2)dkL*(U64x2)dkH; */
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#else /* scalar variant - universal */
|
|
|
|
U64* const xacc = (U64*) acc; /* presumed aligned */
|
|
const U32* const xdata = (const U32*) data;
|
|
const U32* const xkey = (const U32*) key;
|
|
|
|
int i;
|
|
for (i=0; i < (int)ACC_NB; i++) {
|
|
int const left = 2*i;
|
|
int const right= 2*i + 1;
|
|
U32 const dataLeft = XXH_readLE32(xdata + left);
|
|
U32 const dataRight = XXH_readLE32(xdata + right);
|
|
xacc[i] += XXH_mult32to64(dataLeft + xkey[left], dataRight + xkey[right]);
|
|
xacc[i] += dataLeft + ((U64)dataRight << 32);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
static void XXH3_scrambleAcc(void* acc, const void* key)
|
|
{
|
|
#if (XXH_VECTOR == XXH_AVX2)
|
|
|
|
assert(((size_t)acc) & 31 == 0);
|
|
{ ALIGN(32) __m256i* const xacc = (__m256i*) acc;
|
|
const __m256i* const xkey = (const __m256i *) key;
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m256i); i++) {
|
|
__m256i data = xacc[i];
|
|
__m256i const shifted = _mm256_srli_epi64(data, 47);
|
|
data = _mm256_xor_si256(data, shifted);
|
|
|
|
{ __m256i const k = _mm256_loadu_si256 (xkey+i);
|
|
__m256i const dk = _mm256_mul_epu32 (data,k); /* U32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
|
|
|
|
__m256i const d2 = _mm256_shuffle_epi32 (data,0x31);
|
|
__m256i const k2 = _mm256_shuffle_epi32 (k,0x31);
|
|
__m256i const dk2 = _mm256_mul_epu32 (d2,k2); /* U32 dk[4] = {d0+k0, d1+k1, d2+k2, d3+k3} */
|
|
|
|
xacc[i] = _mm256_xor_si256(dk, dk2);
|
|
} }
|
|
}
|
|
|
|
#elif (XXH_VECTOR == XXH_SSE2)
|
|
|
|
assert(((size_t)acc) & 15 == 0);
|
|
{ ALIGN(16) __m128i* const xacc = (__m128i*) acc;
|
|
const __m128i* const xkey = (const __m128i *) key;
|
|
|
|
size_t i;
|
|
for (i=0; i < STRIPE_LEN/sizeof(__m128i); i++) {
|
|
__m128i data = xacc[i];
|
|
__m128i const shifted = _mm_srli_epi64(data, 47);
|
|
data = _mm_xor_si128(data, shifted);
|
|
|
|
{ __m128i const k = _mm_loadu_si128 (xkey+i);
|
|
__m128i const dk = _mm_mul_epu32 (data,k);
|
|
|
|
__m128i const d2 = _mm_shuffle_epi32 (data, 0x31);
|
|
__m128i const k2 = _mm_shuffle_epi32 (k, 0x31);
|
|
__m128i const dk2 = _mm_mul_epu32 (d2,k2);
|
|
|
|
xacc[i] = _mm_xor_si128(dk, dk2);
|
|
} }
|
|
}
|
|
|
|
#elif (XXH_VECTOR == XXH_NEON)
|
|
|
|
assert(((size_t)acc) & 15 == 0);
|
|
{ uint64x2_t* const xacc = (uint64x2_t*) acc;
|
|
const uint32_t* const xkey = (const uint32_t*) key;
|
|
size_t i;
|
|
|
|
for (i=0; i < STRIPE_LEN/sizeof(uint64x2_t); i++) {
|
|
uint64x2_t data = xacc[i];
|
|
uint64x2_t const shifted = vshrq_n_u64(data, 47); /* uint64 shifted[2] = data >> 47; */
|
|
data = veorq_u64(data, shifted); /* data ^= shifted; */
|
|
{
|
|
/* shuffle: 0, 1, 2, 3 -> 0, 2, 1, 3 */
|
|
uint32x2x2_t const d =
|
|
vzip_u32(
|
|
vget_low_u32(vreinterpretq_u32_u64(data)),
|
|
vget_high_u32(vreinterpretq_u32_u64(data))
|
|
);
|
|
uint32x2x2_t const k = vld2_u32(xkey+i*4); /* load and swap */
|
|
uint64x2_t const dk = vmull_u32(d.val[0],k.val[0]); /* U64 dk[2] = {(U64)d0*k0, (U64)d2*k2} */
|
|
uint64x2_t const dk2 = vmull_u32(d.val[1],k.val[1]); /* U64 dk2[2] = {(U64)d1*k1, (U64)d3*k3} */
|
|
xacc[i] = veorq_u64(dk, dk2); /* xacc[i] = dk^dk2; */
|
|
} }
|
|
}
|
|
|
|
#else /* scalar variant - universal */
|
|
|
|
U64* const xacc = (U64*) acc;
|
|
const U32* const xkey = (const U32*) key;
|
|
|
|
int i;
|
|
for (i=0; i < (int)ACC_NB; i++) {
|
|
int const left = 2*i;
|
|
int const right= 2*i + 1;
|
|
xacc[i] ^= xacc[i] >> 47;
|
|
|
|
{ U64 const p1 = XXH_mult32to64(xacc[i] & 0xFFFFFFFF, xkey[left]);
|
|
U64 const p2 = XXH_mult32to64(xacc[i] >> 32, xkey[right]);
|
|
xacc[i] = p1 ^ p2;
|
|
} }
|
|
|
|
#endif
|
|
}
|
|
|
|
static void XXH3_accumulate(U64* acc, const void* restrict data, const U32* restrict key, size_t nbStripes)
|
|
{
|
|
size_t n;
|
|
/* Clang doesn't unroll this loop without the pragma. Unrolling can be up to 1.4x faster. */
|
|
#if defined(__clang__) && !defined(__OPTIMIZE_SIZE__)
|
|
# pragma clang loop unroll(enable)
|
|
#endif
|
|
for (n = 0; n < nbStripes; n++ ) {
|
|
XXH3_accumulate_512(acc, (const BYTE*)data + n*STRIPE_LEN, key);
|
|
key += 2;
|
|
}
|
|
}
|
|
|
|
static void
|
|
XXH3_hashLong(U64* acc, const void* data, size_t len)
|
|
{
|
|
#define NB_KEYS ((KEYSET_DEFAULT_SIZE - STRIPE_ELTS) / 2)
|
|
|
|
size_t const block_len = STRIPE_LEN * NB_KEYS;
|
|
size_t const nb_blocks = len / block_len;
|
|
|
|
size_t n;
|
|
for (n = 0; n < nb_blocks; n++) {
|
|
XXH3_accumulate(acc, (const BYTE*)data + n*block_len, kKey, NB_KEYS);
|
|
XXH3_scrambleAcc(acc, kKey + (KEYSET_DEFAULT_SIZE - STRIPE_ELTS));
|
|
}
|
|
|
|
/* last partial block */
|
|
assert(len > STRIPE_LEN);
|
|
{ size_t const nbStripes = (len % block_len) / STRIPE_LEN;
|
|
assert(nbStripes < NB_KEYS);
|
|
XXH3_accumulate(acc, (const BYTE*)data + nb_blocks*block_len, kKey, nbStripes);
|
|
|
|
/* last stripe */
|
|
if (len & (STRIPE_LEN - 1)) {
|
|
const BYTE* const p = (const BYTE*) data + len - STRIPE_LEN;
|
|
XXH3_accumulate_512(acc, p, kKey + nbStripes*2);
|
|
} }
|
|
}
|
|
|
|
|
|
XXH_FORCE_INLINE U64 XXH3_mix16B(const void* data, const void* key)
|
|
{
|
|
const U64* const key64 = (const U64*)key;
|
|
return XXH3_mul128(
|
|
XXH_readLE64(data) ^ XXH3_readKey64(key64),
|
|
XXH_readLE64((const BYTE*)data+8) ^ XXH3_readKey64(key64+1) );
|
|
}
|
|
|
|
XXH_FORCE_INLINE U64 XXH3_mix2Accs(const U64* acc, const void* key)
|
|
{
|
|
const U64* const key64 = (const U64*)key;
|
|
return XXH3_mul128(
|
|
acc[0] ^ XXH3_readKey64(key64),
|
|
acc[1] ^ XXH3_readKey64(key64+1) );
|
|
}
|
|
|
|
static XXH64_hash_t XXH3_mergeAccs(const U64* acc, const U32* key, U64 start)
|
|
{
|
|
U64 result64 = start;
|
|
|
|
result64 += XXH3_mix2Accs(acc+0, key+0);
|
|
result64 += XXH3_mix2Accs(acc+2, key+4);
|
|
result64 += XXH3_mix2Accs(acc+4, key+8);
|
|
result64 += XXH3_mix2Accs(acc+6, key+12);
|
|
|
|
return XXH3_avalanche(result64);
|
|
}
|
|
|
|
XXH_NO_INLINE XXH64_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
|
XXH3_hashLong_64b(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
ALIGN(64) U64 acc[ACC_NB] = { seed, PRIME64_1, PRIME64_2, PRIME64_3, PRIME64_4, PRIME64_5, (U64)0 - seed, 0 };
|
|
|
|
XXH3_hashLong(acc, data, len);
|
|
|
|
/* converge into final hash */
|
|
assert(sizeof(acc) == 64);
|
|
return XXH3_mergeAccs(acc, kKey, (U64)len * PRIME64_1);
|
|
}
|
|
|
|
|
|
/* === Public entry point === */
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t
|
|
XXH3_64bits_withSeed(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
const BYTE* const p = (const BYTE*)data;
|
|
const char* const key = (const char*)kKey;
|
|
|
|
if (len <= 16) return XXH3_len_0to16_64b(data, len, seed);
|
|
|
|
{ U64 acc = PRIME64_1 * (len + seed);
|
|
if (len > 32) {
|
|
if (len > 64) {
|
|
if (len > 96) {
|
|
if (len > 128) return XXH3_hashLong_64b(data, len, seed);
|
|
|
|
acc += XXH3_mix16B(p+48, key+96);
|
|
acc += XXH3_mix16B(p+len-64, key+112);
|
|
}
|
|
|
|
acc += XXH3_mix16B(p+32, key+64);
|
|
acc += XXH3_mix16B(p+len-48, key+80);
|
|
}
|
|
|
|
acc += XXH3_mix16B(p+16, key+32);
|
|
acc += XXH3_mix16B(p+len-32, key+48);
|
|
|
|
}
|
|
|
|
acc += XXH3_mix16B(p+0, key+0);
|
|
acc += XXH3_mix16B(p+len-16, key+16);
|
|
|
|
return XXH3_avalanche(acc);
|
|
}
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH64_hash_t XXH3_64bits(const void* data, size_t len)
|
|
{
|
|
return XXH3_64bits_withSeed(data, len, 0);
|
|
}
|
|
|
|
|
|
|
|
/* ==========================================
|
|
* XXH3 128 bits (=> XXH128)
|
|
* ========================================== */
|
|
|
|
XXH_FORCE_INLINE XXH128_hash_t
|
|
XXH3_len_1to3_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(len > 0 && len <= 3);
|
|
assert(keyPtr != NULL);
|
|
{ const U32* const key32 = (const U32*) keyPtr;
|
|
BYTE const c1 = ((const BYTE*)data)[0];
|
|
BYTE const c2 = ((const BYTE*)data)[len >> 1];
|
|
BYTE const c3 = ((const BYTE*)data)[len - 1];
|
|
U32 const l1 = (U32)(c1) + ((U32)(c2) << 8);
|
|
U32 const l2 = (U32)(len) + ((U32)(c3) << 2);
|
|
U64 const ll11 = XXH_mult32to64(l1 + seed + key32[0], l2 + key32[1]);
|
|
U64 const ll12 = XXH_mult32to64(l1 + key32[2], l2 - seed + key32[3]);
|
|
XXH128_hash_t const h128 = { XXH3_avalanche(ll11), XXH3_avalanche(ll12) };
|
|
return h128;
|
|
}
|
|
}
|
|
|
|
|
|
XXH_FORCE_INLINE XXH128_hash_t
|
|
XXH3_len_4to8_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(len >= 4 && len <= 8);
|
|
{ const U32* const key32 = (const U32*) keyPtr;
|
|
U64 acc1 = PRIME64_1 * ((U64)len + seed);
|
|
U64 acc2 = PRIME64_2 * ((U64)len - seed);
|
|
U32 const l1 = XXH_readLE32(data);
|
|
U32 const l2 = XXH_readLE32((const BYTE*)data + len - 4);
|
|
acc1 += XXH_mult32to64(l1 + key32[0], l2 + key32[1]);
|
|
acc2 += XXH_mult32to64(l1 - key32[2], l2 + key32[3]);
|
|
{ XXH128_hash_t const h128 = { XXH3_avalanche(acc1), XXH3_avalanche(acc2) };
|
|
return h128;
|
|
}
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE XXH128_hash_t
|
|
XXH3_len_9to16_128b(const void* data, size_t len, const void* keyPtr, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(key != NULL);
|
|
assert(len >= 9 && len <= 16);
|
|
{ const U64* const key64 = (const U64*) keyPtr;
|
|
U64 acc1 = PRIME64_1 * ((U64)len + seed);
|
|
U64 acc2 = PRIME64_2 * ((U64)len - seed);
|
|
U64 const ll1 = XXH_readLE64(data);
|
|
U64 const ll2 = XXH_readLE64((const BYTE*)data + len - 8);
|
|
acc1 += XXH3_mul128(ll1 + XXH3_readKey64(key64+0), ll2 + XXH3_readKey64(key64+1));
|
|
acc2 += XXH3_mul128(ll1 + XXH3_readKey64(key64+2), ll2 + XXH3_readKey64(key64+3));
|
|
{ XXH128_hash_t const h128 = { XXH3_avalanche(acc1), XXH3_avalanche(acc2) };
|
|
return h128;
|
|
}
|
|
}
|
|
}
|
|
|
|
XXH_FORCE_INLINE XXH128_hash_t
|
|
XXH3_len_0to16_128b(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
assert(data != NULL);
|
|
assert(len <= 16);
|
|
{ if (len > 8) return XXH3_len_9to16_128b(data, len, kKey, seed);
|
|
if (len >= 4) return XXH3_len_4to8_128b(data, len, kKey, seed);
|
|
if (len) return XXH3_len_1to3_128b(data, len, kKey, seed);
|
|
{ XXH128_hash_t const h128 = { seed, (XXH64_hash_t)0 - seed };
|
|
return h128;
|
|
}
|
|
}
|
|
}
|
|
|
|
XXH_NO_INLINE XXH128_hash_t /* It's important for performance that XXH3_hashLong is not inlined. Not sure why (uop cache maybe ?), but difference is large and easily measurable */
|
|
XXH3_hashLong_128b(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
ALIGN(64) U64 acc[ACC_NB] = { seed, PRIME64_1, PRIME64_2, PRIME64_3, PRIME64_4, PRIME64_5, (U64)0 - seed, 0 };
|
|
assert(len > 128);
|
|
|
|
XXH3_hashLong(acc, data, len);
|
|
|
|
/* converge into final hash */
|
|
assert(sizeof(acc) == 64);
|
|
{ U64 const low64 = XXH3_mergeAccs(acc, kKey, (U64)len * PRIME64_1);
|
|
U64 const high64 = XXH3_mergeAccs(acc, kKey+16, ((U64)len+1) * PRIME64_2);
|
|
XXH128_hash_t const h128 = { low64, high64 };
|
|
return h128;
|
|
}
|
|
}
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t
|
|
XXH3_128bits_withSeed(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
if (len <= 16) return XXH3_len_0to16_128b(data, len, seed);
|
|
|
|
{ U64 acc1 = PRIME64_1 * (len + seed);
|
|
U64 acc2 = 0;
|
|
const BYTE* const p = (const BYTE*)data;
|
|
const char* const key = (const char*)kKey;
|
|
if (len > 32) {
|
|
if (len > 64) {
|
|
if (len > 96) {
|
|
if (len > 128) return XXH3_hashLong_128b(data, len, seed);
|
|
|
|
acc1 += XXH3_mix16B(p+48, key+96);
|
|
acc2 += XXH3_mix16B(p+len-64, key+112);
|
|
}
|
|
|
|
acc1 += XXH3_mix16B(p+32, key+64);
|
|
acc2 += XXH3_mix16B(p+len-48, key+80);
|
|
}
|
|
|
|
acc1 += XXH3_mix16B(p+16, key+32);
|
|
acc2 += XXH3_mix16B(p+len-32, key+48);
|
|
|
|
}
|
|
|
|
acc1 += XXH3_mix16B(p+0, key+0);
|
|
acc2 += XXH3_mix16B(p+len-16, key+16);
|
|
|
|
{ U64 const part1 = acc1 + acc2;
|
|
U64 const part2 = (acc1 * PRIME64_3) + (acc2 * PRIME64_4) + ((len - seed) * PRIME64_2);
|
|
XXH128_hash_t const h128 = { XXH3_avalanche(part1), (XXH64_hash_t)0 - XXH3_avalanche(part2) };
|
|
return h128;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH3_128bits(const void* data, size_t len)
|
|
{
|
|
return XXH3_128bits_withSeed(data, len, 0);
|
|
}
|
|
|
|
|
|
XXH_PUBLIC_API XXH128_hash_t XXH128(const void* data, size_t len, XXH64_hash_t seed)
|
|
{
|
|
return XXH3_128bits_withSeed(data, len, seed);
|
|
}
|
|
|
|
#endif /* XXH3_H */
|